A Direct Decomposition of 3-connected Planar Graphs
نویسندگان
چکیده
We present a decomposition strategy for c-nets, i. e., rooted 3-connected planar maps. The decomposition yields an algebraic equation for the number of c-nets with a given number of vertices and a given size of the outer face. The decomposition also leads to a deterministic and polynomial time algorithm to sample c-nets uniformly at random. Using rejection sampling, we can also sample isomorphism types of convex polyhedra, i.e., 3-connected planar graphs, uniformly at random. RÉSUMÉ. Nous proposons une stratégie de décomposition pour les cartes pointées 3connexes (c-réseaux). Cette décomposition permet d’obtenir une équation algébrique pour le nombre de c-réseaux suivant le nombre de sommets et la taille de la face extèrieure. On en déduit un algorithme de complexité en temps polynomiale pour le tirage aléatoire uniforme des c-réseaux. En utilisant une méthode à rejet, nous obtenons aussi un algorithme de tirage aléatoire uniforme pour les graphes planaires 3-connexes.
منابع مشابه
Decomposing Infinite 2-Connected Graphs into 3-Connected Components
In the 1960’s, Tutte presented a decomposition of a 2-connected finite graph into 3-connected graphs, cycles and bonds. This decomposition has been used to reduce problems on 2-connected graphs to problems on 3-connected graphs. Motivated by a problem concerning accumulation points of infinite planar graphs, we generalize Tutte’s decomposition to include all infinite 2-connected graphs.
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملGenerating unlabeled connected cubic planar graphs uniformly at random
We present an expected polynomial time algorithm to generate an unlabeled connected cubic planar graph uniformly at random. We first consider rooted connected cubic planar graphs, i.e., we count connected cubic planar graphs up to isomorphisms that fix a certain directed edge. Based on decompositions along the connectivity structure, we derive recurrence formulas for the exact number of rooted ...
متن کاملGenerating Labeled Planar Graphs Uniformly at Random
We present an expected polynomial time algorithm to generate a labeled planar graph uniformly at random. To generate the planar graphs, we derive recurrence formulas that count all such graphs with vertices and edges, based on a decomposition into 1-, 2-, and 3-connected components. For 3-connected graphs we apply a recent random generation algorithm by Schaeffer and a counting formula by Mulli...
متن کاملStructure and enumeration of two-connected graphs with prescribed three-connected components
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associated with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and black vertices are bonds a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005